Elementary Statistics	Name:
Study Guide 27	Class:
Due Date:	Score:

Your solutions must be consistent with class notes & resources.

Be Neat, Organized, and No Work \Leftrightarrow No Points

1. A local nurse's union has done a study on salary of full-time nurses. The result of this study is summarized in the table below.

Females	Males	
$n_1 = 60$	$n_2 = 48$	
$\bar{x}_1 = 7050$	$\bar{x}_2 = 6750$	
$s_1 = $ Not Given	$s_2 = $ Not Given	
$\sigma_1 = 275$	$\sigma_2 = 250$	

Table 1:

Monthly Salaries For Nurses

(a) (3 points) Construct a 98% confidence interval for the difference between population means $\mu_1 - \mu_2$ using data in table 1.

(a) _____

(b) (2 points) Compute the margin of error.

(b) _____

A local newspaper claims that the mean salary of all full-time female nurses is more than the mean salary of all full-time male nurses. Test this claim at $\alpha = 0.02$ by using the data in table 1. (c) (3 points) Clearly state H_0 , H_1 , identify the claim and type of test.

- H₀:______
- (d) (3 points) Find all related critical values, draw the distribution, clearly mark and shade the critical region(s).

(e) (3 points) Find the computed test statistic and the P-value.

C.T.S. : _____

P-Value : _____

(f) (2 points) Use non-statistical terminology to state your final conclusion about the claim.

(f) _____

2. Given:
$$n_1 = 50, \bar{x}_1 = 16.735, \sigma_1 = 1.14, n_2 = 45, \bar{x}_2 = 14.384, \sigma_2 = 1.592$$

(a) (2 points) Round given data to one-decimal place, and then complete the following table.

Sample 1	Sample 2	
$n_1 =$	$n_2 =$	
$\bar{x}_1 =$	$\bar{x}_2 =$	
$\sigma_1 =$	$\sigma_2 =$	

(b) (3 points) Construct 99% confidence interval for the difference between population means $\mu_1 - \mu_2$ using data summarized in the table.

(b) _____

(c) (2 points) Compute the margin of error.

(a)		

(d) (2 points) Construct 90% confidence interval for the difference between population means $\mu_1 - \mu_2$ using data summarized in the table.

(d) _____

A researcher claims there is no difference between the two population means and wishes to use our summarized data in the table to perform a hypothesis testing between two population means.

- (e) (2 points) Clearly state H_0 and H_1 , and identify the type of test.
- (f) (3 points) Using $\alpha = 0.02$ significance level, find and name all related critical values, draw the distribution, and clearly mark and shade the critical region(s).

(g) (3 points) Find the computed test statistic and the P-value.

C.T.S. : _____ P-Value : _____

(h) (2 points) Use non-statistical terminology to express your final conclusion about the researcher's claim.

(h)_____

3. The following calculator displays present the information that a researcher has entered into the calculator in an attempt to find the confidence interval for the difference between two population means.

- (a) (2 points) Write the confidence interval in proper mathematical notation. Round your final answer to a whole number.
- (b) (2 points) Find the margin of error.
- - *H*₁ : _____
- (d) (3 points) Find all related critical values, draw the distribution, clearly mark and shade the critical region(s).

(e) (3 points) Find the computed test statistic and the P-value.

(f) (2 points) Use non-statistical terminology to state your final conclusion about the claim.

(f) _____

(a) _____

Failure is not the opposite of success, when we learn from it.